
Apache Drill
Implementation Deep Dive

Ted Dunning & Michael Hausenblas
Berlin Buzzwords 2013-06-03

Which
workloads
do you
encounter
in your
environmen
t?

h
ttp

://w
w

w
. flickr.co

m
/p

h
o
to

s/ke
v
in

o
m

a
ra

/2
8

6
6
6

4
8

3
3
0

/ lice
n
se

d
 u

n
d

e
r C

C
 B

Y-N
C

-N
D

 2
.0

http://www.flickr.com/photos/kevinomara/2866648330/
http://www.flickr.com/photos/kevinomara/2866648330/

Batch processing

… for recurring tasks such as large-scale data
mining, ETL offloading/data-warehousing for the
batch layer in Lambda architecture

OLTP

… user-facing eCommerce transactions, real-time
messaging at scale (FB), time-series processing,
etc. for the serving layer in Lambda architecture

Stream processing

… in order to handle stream sources such as social
media feeds or sensor data (mobile phones, RFID,
weather stations, etc.) for the speed layer in
Lambda architecture

Search/Information Retrieval

… retrieval of items from unstructured
documents (plain text, etc.), semi-structured
data formats (JSON, etc.), as well as data
stores (MongoDB, CouchDB, etc.)

http://www.flickr.com/photos/9479603@N02/4144121838/ licensed under CC BY-
NC-ND 2.0

But what
about
interactive
ad-hoc
query
at scale?

http://www.flickr.com/photos/9479603@N02/4144121838/
http://www.flickr.com/photos/9479603@N02/4144121838/

Impala

Interactive Query (?)

low-latency

Use Case: Logistics

• Supplier tracking and performance

• Queries

– Shipments from supplier ‘ACM’ in last
24h

– Shipments in region ‘US’ not from ‘ACM’
SUPPLIER
_ID

NAME REGION

ACM ACME Corp US

GAL GotALot Inc US

BAP Bits and Pieces
Ltd

Europe

ZUP Zu Pli Asia

{
 "shipment": 100123,
 "supplier": "ACM",
 “timestamp": "2013-02-01",
 "description": ”first delivery today”
},
{
 "shipment": 100124,
 "supplier": "BAP",
 "timestamp": "2013-02-02",
 "description": "hope you enjoy it”
}
…

Use Case: Crime Detection

• Online purchases

• Fraud, bilking, etc.

• Batch-generated overview

• Modes

– Explorative

– Alerts

Requirements

• Support for different data sources

• Support for different query interfaces

• Low-latency/real-time

• Ad-hoc queries

• Scalable, reliable

And now for something completely different …

Google’s Dremel

http://research.google.com/pubs/pub36632.html

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, Theo Vassilakis, Proc. of the 36th Int'l Conf on Very
Large Data Bases (2010), pp. 330-339

Dremel is a scalable, interactive ad-hoc
query system for analysis of read-only
nested data. By combining multi-level
execution trees and columnar data layout,
it is capable of running aggregation
queries over trillion-row tables in
seconds. The system scales to thousands of
CPUs and petabytes of data, and has
thousands of users at Google.
…

“
“
Dremel is a scalable, interactive ad-hoc
query system for analysis of read-only
nested data. By combining multi-level
execution trees and columnar data layout,
it is capable of running aggregation
queries over trillion-row tables in
seconds. The system scales to thousands of
CPUs and petabytes of data, and has
thousands of users at Google.
…

http://research.google.com/pubs/pub36632.html

Google’s Dremel

multi-level execution trees

columnar data layout

Google’s Dremel

nested data + schema column-striped representation

map nested data to tables

Google’s Dremel

experiments:
datasets & query performance

Back to Apache Drill …

Apache Drill–key facts

• Inspired by Google’s Dremel

• Standard SQL 2003 support

• Plug-able data sources

• Nested data is a first-class citizen

• Schema is optional

• Community driven, open, 100’s
involved

High-level Architecture

Principled Query Execution

• Source query—what we want to do
(analyst friendly)

• Logical Plan— what we want to do
(language agnostic, computer friendly)

• Physical Plan—how we want to do it (the
best way we can tell)

• Execution Plan—where we want to do it

Principled Query Execution

Sourc
e

Quer
y

Parse
r

Logic
al

Plan

Optimiz
er

Physic
al Plan

Executio
n

SQL 2003
DrQL
MongoQL
DSL

scanner APITopology
CF
etc.

query: [
 {
 @id: "log",
 op: "sequence",
 do: [
 {
 op: "scan",
 source: “logs”
 },
 {
 op: "filter",
 condition:
 "x > 3”
 },

parser API

Wire-level Architecture

• Each node: Drillbit - maximize data locality

• Co-ordination, query planning, execution, etc, are
distributed

• Any node can act as endpoint for a query—
foreman

Storage
Process

Drillbit

node

Storage
Process

Drillbit

node

Storage
Process

Drillbit

node

Storage
Process

Drillbit

node

Wire-level Architecture

• Curator/Zookeeper for ephemeral cluster
membership info

• Distributed cache (Hazelcast) for metadata,
locality information, etc. Curator/

Zk

Distributed
Cache

Storage
Process

Drillbit

node

Storage
Process

Drillbit

node

Storage
Process

Drillbit

node

Storage
Process

Drillbit

node

Distributed
Cache

Distributed
Cache

Distributed
Cache

Wire-level Architecture

• Originating Drillbit acts as foreman: manages
query execution, scheduling, locality information,
etc.

• Streaming data communication avoiding SerDeCurator/
Zk

Distributed
Cache

Storage
Process

Drillbit

node

Storage
Process

Drillbit

node

Storage
Process

Drillbit

node

Storage
Process

Drillbit

node

Distributed
Cache

Distributed
Cache

Distributed
Cache

Wire-level Architecture
Foreman turns into root of the multi-level
execution tree, leafs activate their storage
engine interface.

node

node node

Curator/
Zk

On the shoulders of giants …

• Jackson for JSON SerDe for metadata

• Typesafe HOCON for configuration and module management

• Netty4 as core RPC engine, protobuf for communication

• Vanilla Java, Larray and Netty ByteBuf for off-heap large data structures

• Hazelcast for distributed cache

• Netflix Curator on top of Zookeeper for service registry

• Optiq for SQL parsing and cost optimization

• Parquet (http://parquet.io) as native columnar format

• Janino for expression compilation

• ASM for ByteCode manipulation

• Yammer Metrics for metrics

• Guava extensively

• Carrot HPC for primitive collections

http://parquet.io/
http://parquet.io/

Key features

• Full SQL – ANSI SQL 2003

• Nested Data as first class citizen

• Optional Schema

• Extensibility Points …

Extensibility Points

• Source query parser API

• Custom operators, UDF logical plan

• Serving tree, CF, topology physical
plan/optimizer

• Data sources &formats scanner API

Sourc
e

Quer
y

Parse
r

Logic
al

Plan

Optimiz
er

Physic
al Plan

Executio
n

User Interfaces

• API—DrillClient

– Encapsulates endpoint discovery

– Supports logical and physical plan submission,
query cancellation, query status

– Supports streaming return results

• JDBC driver, converting JDBC into DrillClient
communication.

• REST proxy for DrillClient

… and Hadoop?
• How is it different to Hive, Cascading, etc.?

• Complementary use cases*

• … use Apache Drill

– Find record with specified condition

– Aggregation under dynamic conditions

• … use MapReduce

– Data mining with multiple iterations

– ETL

*) h
ttp

s://clo
u
d

.g
o
o
g
le

.co
m

/f ile
s/B

ig
Q

u
e
ry

Te
ch

n
ica

lW
P .p

d
f

https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://cloud.google.com/files/BigQueryTechnicalWP.pdf

Let’s get our hands
dirty…

Basic Demo

https://cwiki.apache.org/confluence/display/DRILL/Demo+HowTo

{
 "id": "0001",
 "type": "donut",
 ”ppu": 0.55,
 "batters":
 {
 "batter”:
 [

{ "id": "1001", "type": "Regular" },
{ "id": "1002", "type": "Chocolate" },

…

data source: donuts.json
 query:[{
 op:"sequence",
 do:[

 {
 op: "scan",
 ref: "donuts",
 source: "local-logs",
 selection: {data: "activity"}
 },
 {
 op: "filter",
 expr: "donuts.ppu < 2.00"
 },

…

logical plan: simple_plan.json

result: out.json

{
 "sales" : 700.0,
 "typeCount" : 1,
 "quantity" : 700,
 "ppu" : 1.0
}
 {
 "sales" : 109.71,
 "typeCount" : 2,
 "quantity" : 159,
 "ppu" : 0.69
}
 {
 "sales" : 184.25,
 "typeCount" : 2,
 "quantity" : 335,
 "ppu" : 0.55
}

https://cwiki.apache.org/confluence/display/DRILL/Demo+HowTo

SELECT
t.cf1.name as name,
SUM(t.cf1.sales) as total_sales

FROM m7://cluster1/sales t
GROUP BY name
ORDER BY by total_sales desc
LIMIT 10;

sequence: [
 { op: scan, storageengine: m7,

 selection: {table: sales}}
 { op: project, projections: [

{ref: name, expr: cf1.name},
{ref: sales, expr: cf1.sales}]}

 { op: segment, ref: by_name, exprs: [name]}
 { op: collapsingaggregate, target: by_name,
 carryovers: [name],

 aggregations: [{ref: total_sales, expr:
 sum(name)}]}
 { op: order, ordering: [{order: desc, expr:
 total_sales}]}
 { op: store, storageengine: screen}
]

{
@id: 1, pop: m7scan, cluster: def,
table: sales, cols: [cf1.name, cf2.name]
}
{
@id: 2, op: hash-random-exchange,
input: 1, expr: 1
}
{
@id: 3, op: sorting-hash-aggregate, input: 2,
grouping: 1, aggr:[sum(2)], carry: [1], sort:
~agrr[0]
}
{
@id: 4, op: screen, input: 4
}

Execution Plan

• Break physical plan into fragments

• Determine quantity of parallelization
for each task based on estimated
costs

• Assign particular nodes based on
affinity, load and topology

Execution Plan
• One root fragment (runs on

driving node)

• Leaf fragments (first tasks to
run)

• Intermediate fragments (won’t
start until they receive data
from their children)

• In the case where the query
output is routed to storage, the
root operator will often receive
metadata to present rather than
data

Root

Intermedia
te

Leaf

Intermedia
te

Leaf

Example Fragments
Leaf Fragment 1
{
 pop : "hash-partition-sender",
 @id : 1,
 child : {
 pop : "mock-scan",
 @id : 2,
 url : "http://apache.org",
 entries : [{
 id : 1,
 records : 4000}]
 },
 destinations : ["Cglsb2NhbGhvc3QY0gk="]

Leaf Fragment 2
{
 pop : "hash-partition-sender",
 @id : 1,
 child : {
 pop : "mock-scan",
 @id : 2,
 url : "http://apache.org",
 entries : [{
 id : 1,
 records : 4000
 }, {
 id : 2,
 records : 4000
 }]
 },
 destinations : ["Cglsb2NhbGhvc3QY0gk="]
}

Root Fragment
{
 pop : "screen",
 @id : 1,
 child : {
 pop : "random-receiver",
 @id : 2,
 providingEndpoints :
["Cglsb2NhbGhvc3QY0gk="]
 }
}

Intermediate Fragment
{
 pop : "single-sender",
 @id : 1,
 child : {
 pop : "mock-store",
 @id : 2,
 child : {
 pop : "filter",
 @id : 3,
 child : {
 pop : "random-receiver",
 @id : 4,
 providingEndpoints :
["Cglsb2NhbGhvc3QYqRI=",
"Cglsb2NhbGhvc3QY0gk="]
 },
 expr : " ('b') > (5) "
 }
 },
 destinations : ["Cglsb2NhbGhvc3QYqRI="]
}

Optimizer

• Convert Logical to Physical

• Very much TBD

• Likely leverage Optiq

• Hardest problem in system,
especially given lack of statistics

• Probably not parallel

Execution Engine

• Single JVM per Drillbit

• Small heap space for object management

• Small set of network event threads to manage
socket operations

• Callbacks for each message sent

• Messages contain header and collection of native
byte buffers

• Designed to minimize copies and ser/de costs

• Query setup and fragment runners managed via
processing queues & thread pools

Data

• Records are broken into batches

• Batches contain a schema and a collection of fields

• Each field has a particular type (e.g. smallint)

• Fields (a.k.a. columns) are stored in ValueVectors

• ValueVectors are façades to byte buffers.

• The in-memory structure of each ValueVector is well
defined and language agnostic

• ValueVectors defined based on the width and nature
of the underlying data

• There are three sub value vector types

Execution Paradigm
• We will have a large amount of operators

• Each operator works on a batch of records at a time

• A loose goal is batches are roughly a single core’s L2 cache in size

• Each batch of records carries a schema

• An operator is responsible for reconfiguring itself if a new schema arrives (or
rejecting the record batch if the schema is disallowed)

• Most operators are the combination of a set of static operations along with the
evaluation of query specific expressions

• Runtime compiled operators are the combination of a pre-compiled template
and a runtime compiled set of expressions

• Exchange operators are converted into Senders and Receiver when execution
plan is materialized

• Each operator must support consumption of a SelectionVector, a partial
materialization of a filter

Storage Engine
• Input and output is done through storage engines

• Responsible for providing metadata & statistics about the data

• Exposes a set of optimizer (plan rewrite) rules to support things
such as predicate pushdown

• Provides one or more storage engine specific scan operators that
can support affinity exposure and task splitting

• Primary interfaces are RecordReader and RecordWriter

• RecordReaders are responsible for

– Converting stored data into canonical ValueVector format

– Providing schema for each record batch

• Our initial storage engines will be for DFS and HBase

Be a part of it!

Status

• Heavy development by multiple
organizations

• Available

– Logical plan (ADSP)

– Reference interpreter

– Basic SQL parser

– Basic demo

https://docs.google.com/document/d/1QTL8warUYS2KjldQrGUse7zp8eA72VKtLOHwfXy6c7I/edit
https://cwiki.apache.org/confluence/display/DRILL/Demo+HowTo

Status

May 2013

• Full SQL support (+JDBC)

• Physical plan

• In-memory compressed data
interfaces

• Distributed execution

Status

May 2013

• HBase and MySQL storage engine

• WebUI client

Contributing

Contributions appreciated (not only code drops) …

• Test data & test queries

• Use case scenarios (textual/SQL queries)

• Documentation

• Further schedule

– Alpha Q2

– Beta Q3

Kudos to …

• Julian Hyde, Pentaho

• Lisen Mu, XingCloud

• Tim Chen, Microsoft

• Chris Merrick, RJMetrics

• David Alves, UT Austin

• Sree Vaadi, SSS

• Jacques Nadeau, MapR

Engage!

• Follow @ApacheDrill on Twitter

• Sign up at mailing lists (user | dev)
http://incubator.apache.org/drill/mailing-lists.html

• Standing G+ hangouts every Tuesday at 5pm GMT
http://j.mp/apache-drill-hangouts

• Keep an eye on http://drill-user.org/

https://twitter.com/ApacheDrill
http://incubator.apache.org/drill/mailing-lists.html
http://j.mp/apache-drill-hangouts
http://j.mp/apache-drill-hangouts
http://j.mp/apache-drill-hangouts
http://drill-user.org/

	Slide 1
	Slide 2
	Batch processing
	OLTP
	Stream processing
	Search/Information Retrieval
	Slide 7
	Interactive Query (?)
	Use Case: Logistics
	Use Case: Crime Detection
	Requirements
	Slide 12
	Google’s Dremel
	Google’s Dremel
	Google’s Dremel
	Google’s Dremel
	Slide 17
	Apache Drill–key facts
	High-level Architecture
	Principled Query Execution
	Principled Query Execution
	Wire-level Architecture
	Wire-level Architecture
	Wire-level Architecture
	Wire-level Architecture
	On the shoulders of giants …
	Key features
	Extensibility Points
	User Interfaces
	… and Hadoop?
	Let’s get our hands dirty…
	Basic Demo
	Slide 33
	Slide 34
	Slide 35
	Execution Plan
	Execution Plan
	Example Fragments
	Optimizer
	Execution Engine
	Data
	Execution Paradigm
	Storage Engine
	Be a part of it!
	Status
	Status
	Status
	Contributing
	Kudos to …
	Engage!

